AbstractIn this paper we will discuss some problems of degree-theoretic nature in connection with recursion in normal objects of higher types.Harrington [2] and Loewenthal [6] have proved some results concerning Post's problem and the Minimal Pair Problem, using recursion modulo subindividuals. Our degrees will be those obtained from Kleene-recursion modulo individuals. To solve our problems we then have to put some extra strength to ZFC. We will first assume V = L, and then we restrict ourselves to the situation of a recursive well-ordering and Martin's axiom.We assume familiarity with recursion theory in higher types as presented in Kleene [3]. Further backround is found in Harrington [2], Moldestad [9] and Normann [11]. We will survey th...