AbstractIn this paper we provide a novel anisotropic mesh adaptation technique for adaptive finite element analysis. It is based on the concept of higher dimensional embedding, which was exploited in [1–4] to obtain an anisotropic curvature adapted mesh that fits a complex surface in R3. In the context of adaptive finite element simulation, the solution (which is an unknown function f : Ω ⊂ d → ) is sought by iteratively modifying a finite element mesh according to a mesh sizing field described via a (discrete) metric tensor field that is typically obtained through an error estimator. We proposed to use a higher dimensional embedding, Φf (x):= (x1, …, xd, s f (x1, …, xd), s ▿ f (x1, …, xd))t, instead of the mesh sizing field for the mesh ad...