AbstractThe method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, arXiv:1208.1403] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that...
LaTeX, 47 pages. Bibliographical improvements. To appear in J. Phys. AInternational audienceThis art...
Various fluid mechanical systems enjoy a hidden, higher-dimensional dynamical Poincare symmetry, whi...
Hassaine, M. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, ChileIn thi...
AbstractThe method of nonlinear realizations and the technique previously developed in [A. Galajinsk...
AbstractDynamical systems invariant under the action of the l-conformal Newton–Hooke algebras are co...
Dynamical systems invariant under the action of the l-conformal Newton–Hooke algebras are constructe...
In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theor...
AbstractIn two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representati...
In two recent papers (Aizawa et al., 2013 [15] ) and (Aizawa et al., 2015 [16] ), representation the...
AbstractIt is demonstrated that the Pais–Uhlenbeck oscillator in arbitrary dimension enjoys the l-co...
K.A. and J.G. are grateful to Piotr Kosiński for helpful and illuminating discussions. We thank Pete...
AbstractA representation of the conformal Newton–Hooke algebra on a phase space of n particles in ar...
We present the minimal realization of the ℓ-conformal Galilei group in 2+1 dimensions on a single co...
AbstractThe group theoretic construction is applied to construct a novel dynamical realization of th...
LaTeX, 31 pages. Sections 3 and 5 reorganized. Conclusion expanded. New references added.Internation...
LaTeX, 47 pages. Bibliographical improvements. To appear in J. Phys. AInternational audienceThis art...
Various fluid mechanical systems enjoy a hidden, higher-dimensional dynamical Poincare symmetry, whi...
Hassaine, M. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, ChileIn thi...
AbstractThe method of nonlinear realizations and the technique previously developed in [A. Galajinsk...
AbstractDynamical systems invariant under the action of the l-conformal Newton–Hooke algebras are co...
Dynamical systems invariant under the action of the l-conformal Newton–Hooke algebras are constructe...
In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theor...
AbstractIn two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representati...
In two recent papers (Aizawa et al., 2013 [15] ) and (Aizawa et al., 2015 [16] ), representation the...
AbstractIt is demonstrated that the Pais–Uhlenbeck oscillator in arbitrary dimension enjoys the l-co...
K.A. and J.G. are grateful to Piotr Kosiński for helpful and illuminating discussions. We thank Pete...
AbstractA representation of the conformal Newton–Hooke algebra on a phase space of n particles in ar...
We present the minimal realization of the ℓ-conformal Galilei group in 2+1 dimensions on a single co...
AbstractThe group theoretic construction is applied to construct a novel dynamical realization of th...
LaTeX, 31 pages. Sections 3 and 5 reorganized. Conclusion expanded. New references added.Internation...
LaTeX, 47 pages. Bibliographical improvements. To appear in J. Phys. AInternational audienceThis art...
Various fluid mechanical systems enjoy a hidden, higher-dimensional dynamical Poincare symmetry, whi...
Hassaine, M. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, ChileIn thi...