AbstractThe graphs of coordinate functions of space-filling curves such as those described by Peano, Hilbert, Pólya and others, are typical examples of self-affine sets, and their Hausdorff dimensions have been the subject of several articles in the mathematical literature. In the first half of this paper, we describe how the study of dimensions of self-affine sets was motivated, at least in part, by these coordinate functions and their natural generalizations, and review the relevant literature. In the second part, we present new results on the coordinate functions of Pólya's one-parameter family of space-filling curves. We give a lower bound for the Hausdorff dimension of their graphs which is fairly close to the box-counting dimension. O...