AbstractWe propose an approach for computing an approximate nonnegative symmetric solution of some fully fuzzy linear system of equations, where the components of the coefficient matrix and the right hand side vector are nonnegative fuzzy numbers, considering equality of the median intervals of the left and right hand sides of the system. We convert the m×n fully fuzzy linear system to two m×n real linear systems, one being related to the cores and the other being concerned with spreads of the solution. We propose an approach for solving the real systems using the modified Huang method of the Abaffy-Broyden-Spedicato (ABS) class of algorithms. An appropriate constrained least squares problem is solved when the solution does not satisfy nonn...