AbstractWe describe parameterized complexity classes by means of classical complexity theory and descriptive complexity theory. For every classical complexity class we introduce a parameterized analogue in a natural way. In particular, the analogue of polynomial time is the class of all fixed-parameter tractable problems. We develop a basic complexity theory for the parameterized analogues of classical complexity classes and give, among other things, complete problems and logical descriptions. We then show that most of the well-known intractable parameterized complexity classes are not analogues of classical classes. Nevertheless, for all these classes we can provide natural logical descriptions
In this note, we show, through the use of examples, how generic results for proving fixed-parameter ...
We study the theory and techniques developed in the research of parameterized intractability, emphas...
AbstractMotivated by recent results showing that there are natural parameterized problems that are f...
A parameterized computational problem is a set of pairs 〈x, k〉, where k is a distinguished item call...
AbstractWe study a refined framework of parameterized complexity theory where the parameter dependen...
Complexity can have many forms, yet there is no single mathematical definition of complexity that th...
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First, we s...
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First, we s...
AbstractMany natural computational problems have input consisting of two or more parts, one of which...
Asking which sets are fixed-parameter tractable for a given parameterization constitutes much of the...
We give machine characterizations of most parameterized complexity classes, in particular, of W[P], ...
Parameterized complexity studies a generalization of the notion of polynomial time where, in additio...
We extend the reach of fixed-parameter analysis by introducing classes of parameterized sets defined...
Abstract. This article was prepared for Mike Fellows Festschrift for his 60th Birthday. Since many o...
Parameterized complexity theory relaxes the classical notion of tractability and allows to solve so...
In this note, we show, through the use of examples, how generic results for proving fixed-parameter ...
We study the theory and techniques developed in the research of parameterized intractability, emphas...
AbstractMotivated by recent results showing that there are natural parameterized problems that are f...
A parameterized computational problem is a set of pairs 〈x, k〉, where k is a distinguished item call...
AbstractWe study a refined framework of parameterized complexity theory where the parameter dependen...
Complexity can have many forms, yet there is no single mathematical definition of complexity that th...
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First, we s...
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First, we s...
AbstractMany natural computational problems have input consisting of two or more parts, one of which...
Asking which sets are fixed-parameter tractable for a given parameterization constitutes much of the...
We give machine characterizations of most parameterized complexity classes, in particular, of W[P], ...
Parameterized complexity studies a generalization of the notion of polynomial time where, in additio...
We extend the reach of fixed-parameter analysis by introducing classes of parameterized sets defined...
Abstract. This article was prepared for Mike Fellows Festschrift for his 60th Birthday. Since many o...
Parameterized complexity theory relaxes the classical notion of tractability and allows to solve so...
In this note, we show, through the use of examples, how generic results for proving fixed-parameter ...
We study the theory and techniques developed in the research of parameterized intractability, emphas...
AbstractMotivated by recent results showing that there are natural parameterized problems that are f...