AbstractWe characterize the interpolating sequences for the Bernstein space of entire functions of exponential type, in terms of a Beurling-type density condition and a Carleson-type separation condition. Our work extends a description previously given by Beurling in the case that the interpolating sequences are restricted to the real line. An essential role is played by a multiplier lemma, which permits us to link techniques from Hardy spaces with entire functions of exponential type. We finally present a characterization of the sampling sequences for the Bernstein space, also extending a density theorem of Beurling
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
AbstractWe prove necessary and sufficient conditions for linear operators to approximate and interpo...
The book is about understanding the geometry of interpolating and sampling sequences in classical sp...
We characterize the interpolating sequences for the Bernstein space of entire functions of exponenti...
AbstractWe characterize the interpolating sequences for the Bernstein space of entire functions of e...
Set $\Delta=\partial^{2} / \partial_{z} \partial_{\bar{z}}$ and let $\varphi$ be a subharmonic funct...
We characterise interpolating and sampling sequences for the spaces of entire functions $f$ such tha...
AbstractThe purpose of this article is to construct complete interpolating sequences for special spa...
AbstractIn [3] Korevaar and Dixon have considered an interpolation problem for entire functions (ste...
An analogue of the notion of uniformly separated sequences, expressed in terms of extremal functions...
Sampling theory is the study of spaces of functions which are reconstructible from their values at c...
AbstractWe consider the problem of reconstruction of functions f from generalized Paley–Wiener space...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41580/1/10958_2005_Article_BF01221572.p...
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
AbstractWe prove necessary and sufficient conditions for linear operators to approximate and interpo...
The book is about understanding the geometry of interpolating and sampling sequences in classical sp...
We characterize the interpolating sequences for the Bernstein space of entire functions of exponenti...
AbstractWe characterize the interpolating sequences for the Bernstein space of entire functions of e...
Set $\Delta=\partial^{2} / \partial_{z} \partial_{\bar{z}}$ and let $\varphi$ be a subharmonic funct...
We characterise interpolating and sampling sequences for the spaces of entire functions $f$ such tha...
AbstractThe purpose of this article is to construct complete interpolating sequences for special spa...
AbstractIn [3] Korevaar and Dixon have considered an interpolation problem for entire functions (ste...
An analogue of the notion of uniformly separated sequences, expressed in terms of extremal functions...
Sampling theory is the study of spaces of functions which are reconstructible from their values at c...
AbstractWe consider the problem of reconstruction of functions f from generalized Paley–Wiener space...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41580/1/10958_2005_Article_BF01221572.p...
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
Nous étudions des problèmes d'interpolation dans des espaces de fonctions analytiques et notamment l...
AbstractWe prove necessary and sufficient conditions for linear operators to approximate and interpo...
The book is about understanding the geometry of interpolating and sampling sequences in classical sp...