AbstractA crucial issue for addressing decision-making problems under uncertainty is the approximate representation of multivariate stochastic processes in the form of scenario tree. This paper proposes a scenario generation approach based on the idea of integrating simulation and optimization techniques. In particular, simulation is used to generate outcomes associated with the nodes of the scenario tree which, in turn, provide the input parameters for an optimization model aimed at determining the scenarios’ probabilities matching some prescribed targets. The approach relies on the moment-matching technique originally proposed in [K. Høyland, S.W. Wallace, Generating scenario trees for multistage decision problems, Manag. Sci. 47 (2001) 2...