AbstractIn this paper we consider uncountable classes recognizable by ω-automata and investigate suitable learning paradigms for them. In particular, the counterparts of explanatory, vacillatory and behaviourally correct learning are introduced for this setting. Here the learner reads in parallel the data of a text for a language L from the class plus an ω-index α and outputs a sequence of ω-automata such that all but finitely many of these ω-automata accept the index α if and only if α is an index for L.It is shown that any class is behaviourally correct learnable if and only if it satisfies Angluin’s tell-tale condition. For explanatory learning, such a result needs that a suitable indexing of the class is chosen. On the one hand, every c...