AbstractState space discretization occurs in the discrete finite arithmetic of a computer. When a dynamical system is simulated by numerical computations, it consequently evolves in a discretized space of this kind. Where attractors are seen in the simulation, what is their relation to the theoretical structures? If a theoretical attractor occurs, should we expect always to see a computational attractor? We address these questions by giving sufficient conditions for a discretized attractor to be present, and show that it converges to the true attractor in the sense of convergence of compact sets in the Hausdorff metric
In order to determine the dynamics of nonautonomous equations both their forward and pullback behavi...
This work focuses on the preservation of attractors and saddle points of ordinary differential equat...
We address three problems arising in the theory of infinite-dimensional dynamical systems. First, w...
AbstractState space discretization occurs in the discrete finite arithmetic of a computer. When a dy...
Investigates what can go wrong when dynamical systems are modelled with a computer. Number theoretic...
Abstract: We investigate necessary and sucient conditions for the convergence of attractors of discr...
We consider a dynamical system described by a system of ordinary differential equations which posses...
AbstractIn this paper we study problems such as: given a discrete time dynamical system of the form ...
We survey the state of the art on the algorithmic analysis of discrete linear dynamical systems, and...
The effect of temporal discretisation on dissipative differential equations is analysed. We discuss ...
AbstractComputer simulations of dynamical systems contain discretizations, where finite machine arit...
AbstractIn this paper we prove that the spatial discretization of a one dimensional system of parabo...
This paper develops a method for obtaining guaranteed outer approximations for global attractors of ...
Abstract. This paper concerns the link between the dynamical behaviour of a dynam-ical system and th...
(eng) We show that several global properties (attractivity, global asymptotic stability and mortalit...
In order to determine the dynamics of nonautonomous equations both their forward and pullback behavi...
This work focuses on the preservation of attractors and saddle points of ordinary differential equat...
We address three problems arising in the theory of infinite-dimensional dynamical systems. First, w...
AbstractState space discretization occurs in the discrete finite arithmetic of a computer. When a dy...
Investigates what can go wrong when dynamical systems are modelled with a computer. Number theoretic...
Abstract: We investigate necessary and sucient conditions for the convergence of attractors of discr...
We consider a dynamical system described by a system of ordinary differential equations which posses...
AbstractIn this paper we study problems such as: given a discrete time dynamical system of the form ...
We survey the state of the art on the algorithmic analysis of discrete linear dynamical systems, and...
The effect of temporal discretisation on dissipative differential equations is analysed. We discuss ...
AbstractComputer simulations of dynamical systems contain discretizations, where finite machine arit...
AbstractIn this paper we prove that the spatial discretization of a one dimensional system of parabo...
This paper develops a method for obtaining guaranteed outer approximations for global attractors of ...
Abstract. This paper concerns the link between the dynamical behaviour of a dynam-ical system and th...
(eng) We show that several global properties (attractivity, global asymptotic stability and mortalit...
In order to determine the dynamics of nonautonomous equations both their forward and pullback behavi...
This work focuses on the preservation of attractors and saddle points of ordinary differential equat...
We address three problems arising in the theory of infinite-dimensional dynamical systems. First, w...