AbstractWe consider the asymptotic joint distribution of the eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues become infinitely dispersed. We show that the normalized sample eigenvalues and the relevant elements of the sample eigenvectors are asymptotically all mutually independently distributed. The limiting distributions of the normalized sample eigenvalues are chi-squared distributions with varying degrees of freedom and the distribution of the relevant elements of the eigenvectors is the standard normal distribution. As an application of this result, we investigate tail minimaxity in the estimation of the population covariance matrix of Wishart distribution with respect to Stein's loss function and the quad...