AbstractAn algorithm for computing a Gröbner basis of a polynomial ideal over a Euclidean domain is presented. The algorithm takes an ideal specified by a finite set of polynomials as its input; it produces another finite basis of the same ideal with the properties that using this basis, every polynomial in the ideal reduces to 0 and every polynomial in the polynomial ring reduces to a unique normal form. The algorithm is an extension of Buchberger's algorithms for computing Gröbner bases of polynomial ideals over an arbitrary field and over the integers as well as our algorithms for computing Gröbner bases of polynomial ideals over the integers and the Gaussian integers. The algorithm is simpler than other algorithms for polynomial ideals ...