AbstractWe give an other proof of the classical Beurling theorem on z -invariant subspaces in the classical Hardy space H2(D) over the open unit disk D, in which the concept of Berezin symbol is not used (see M.T. Karaev [On some problems related to Berezin symbols, C. R. Acad. Sci. Paris, Ser. I 340 (10) (2005) 715–718]). This improves the author's proof in Karaev (2005)
A subspace X of the Hardy space H1 is said to have the K-property if for any ψ ∈ H∞, the Toeplitz op...
AbstractWe give in terms of reproducing kernel and Berezin symbol the sufficient conditions ensuring...
AbstractThis paper gives several results on Besov spaces of holomorphic functions on a very large cl...
In this paper, we use a new method to solve a long-standing problem. More specifically, we show that...
By Beurling´s theorem, the orthogonal projection onto an invariant subspace M of the Hardy space H^{...
AbstractA theorem of Beurling–Lax–Halmos represents a subspace M of H2C(D)—the Hardy space of analyt...
The standard Berezin and Berezin-Toeplitz quantizations on a K¨ahler manifold are based on operator ...
The classical Hardy space H2 has a natural structure of a module over the algebra of polynomials C[z...
In this paper, we provide the new Berezin radius inequalities on the space of operators defined on ...
We prove Beurling-type theorems for H-invariant spaces in relation to a semifinite von Neu-mann alge...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
Beurling's theorem characterizes the forward shift invariant subspaces in the Hardy space $H^2$ on t...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
A subspace X of the Hardy space H1 is said to have the K-property if for any ψ ∈ H∞, the Toeplitz op...
AbstractWe give in terms of reproducing kernel and Berezin symbol the sufficient conditions ensuring...
AbstractThis paper gives several results on Besov spaces of holomorphic functions on a very large cl...
In this paper, we use a new method to solve a long-standing problem. More specifically, we show that...
By Beurling´s theorem, the orthogonal projection onto an invariant subspace M of the Hardy space H^{...
AbstractA theorem of Beurling–Lax–Halmos represents a subspace M of H2C(D)—the Hardy space of analyt...
The standard Berezin and Berezin-Toeplitz quantizations on a K¨ahler manifold are based on operator ...
The classical Hardy space H2 has a natural structure of a module over the algebra of polynomials C[z...
In this paper, we provide the new Berezin radius inequalities on the space of operators defined on ...
We prove Beurling-type theorems for H-invariant spaces in relation to a semifinite von Neu-mann alge...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
Beurling's theorem characterizes the forward shift invariant subspaces in the Hardy space $H^2$ on t...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
We define the analytic Besov spaces on a bounded symmetric domain associated with a rearrangement in...
A subspace X of the Hardy space H1 is said to have the K-property if for any ψ ∈ H∞, the Toeplitz op...
AbstractWe give in terms of reproducing kernel and Berezin symbol the sufficient conditions ensuring...
AbstractThis paper gives several results on Besov spaces of holomorphic functions on a very large cl...