AbstractThe notion of a bimodule herd is introduced and studied. A bimodule herd consists of a B-A bimodule, its formal dual, called a pen, and a map, called a shepherd, which satisfies unitality and coassociativity conditions. It is shown that every bimodule herd gives rise to a pair of corings and coactions. If, in addition, a bimodule herd is tame i.e. it is faithfully flat and a progenerator, or if it is a progenerator and the underlying ring extensions are split, then these corings are associated to entwining structures; the bimodule herd is a Galois comodule of these corings. The notion of a bicomodule coherd is introduced as a formal dualisation of the definition of a bimodule herd. Every bicomodule coherd defines a pair of (non-unit...