AbstractLet p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215) that a regular edge-transitive graph of order 2p or 2p2 is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that, with the exception of the Gray graph on 54 vertices, every cubic edge-transitive graph of order 2p3 is vertex-transitive
AbstractIt is proved that every connected cubic simple graph admitting a vertex-transitive action of...
AbstractA graph is weakly symmetric if its automorphism group is both vertex-transitive and edge-tra...
AbstractAn old conjecture of Marušič, Jordan and Klin asserts that any finite vertex-transitive grap...
AbstractLet p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215) that a regular ed...
A graph is called edge-transitive, if its full automorphismgroup acts transitively on its edge set. ...
AbstractA regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive. ...
Abstract. A regular graph Γ is said to be semisymmetric if its full automorphism group acts transiti...
AbstractAn infinite family of cubic edge- but not vertex-transitive graphs is constructed. The graph...
A simple undirected graph is called semisymmetric if it is regular and edge transitive but not verte...
A simple undirected graph is called semisymmetric if it is regular and edge transitive but not verte...
A graph is said to be semisymmetric if its full automorphism group actstransitively on its edge set ...
A graph is said to be semisymmetric if its full automorphism group actstransitively on its edge set ...
AbstractLet φ be Euler's phi function. Let n be a square-free positive integer such that gcd(n,φ(n))...
For a positive integer n, does there exist a vertex-transitive graph Γ on n vertices which is not a ...
A graph is weakly symmetric if its automorphism group is both vertex-transitive and edge-transitive....
AbstractIt is proved that every connected cubic simple graph admitting a vertex-transitive action of...
AbstractA graph is weakly symmetric if its automorphism group is both vertex-transitive and edge-tra...
AbstractAn old conjecture of Marušič, Jordan and Klin asserts that any finite vertex-transitive grap...
AbstractLet p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215) that a regular ed...
A graph is called edge-transitive, if its full automorphismgroup acts transitively on its edge set. ...
AbstractA regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive. ...
Abstract. A regular graph Γ is said to be semisymmetric if its full automorphism group acts transiti...
AbstractAn infinite family of cubic edge- but not vertex-transitive graphs is constructed. The graph...
A simple undirected graph is called semisymmetric if it is regular and edge transitive but not verte...
A simple undirected graph is called semisymmetric if it is regular and edge transitive but not verte...
A graph is said to be semisymmetric if its full automorphism group actstransitively on its edge set ...
A graph is said to be semisymmetric if its full automorphism group actstransitively on its edge set ...
AbstractLet φ be Euler's phi function. Let n be a square-free positive integer such that gcd(n,φ(n))...
For a positive integer n, does there exist a vertex-transitive graph Γ on n vertices which is not a ...
A graph is weakly symmetric if its automorphism group is both vertex-transitive and edge-transitive....
AbstractIt is proved that every connected cubic simple graph admitting a vertex-transitive action of...
AbstractA graph is weakly symmetric if its automorphism group is both vertex-transitive and edge-tra...
AbstractAn old conjecture of Marušič, Jordan and Klin asserts that any finite vertex-transitive grap...