In microelectronic, the device's performance evolution is limited by the down-scaling. The mechanical stresses are a potential mobility booster to overcome these limitations. However it is essential to properly control their process integration and to understand their influence on channel transport. The aim of this thesis is to study the mechanical stress evolution in CMOS technology and its impact on electronic transport in sub-20nm realistic technologies. This work is based on bidimensional mechanical simulations. Different architectures FDSOI and TriGate are then studied. The simulated stress maps are compared to experimental characterization from electron diffraction. Several methods of electrical characterization and extraction of MOS ...