The quantum many-body bound-state problem in its computationally successful coupled cluster method (CCM) representation is reconsidered. In conventional practice one factorizes the groundstate wave functions |Ψ) = eS |Φ) which live in the “physical” Hilbert space H(P) using an elementary ansatz for |Φi plus a formal expansion of S in an operator basis of multi-configurational creation operators C+. In our paper a reinterpretation of the method is proposed. Using parallels between the CCM and the so called quasi-Hermitian, alias three-Hilbert-space (THS), quantum mechanics, the CCM transition from the known microscopic Hamiltonian (denoted by usual symbol H), which is self-adjoint in H(P), to its effective lower-case isospectral avatar h = e...
AbstractTo solve the relativistic bound-state problem one needs to systematically and simultaneously...
State-average calculations based on mixture of states are increasingly being exploited across chemis...
Nuclear Hamiltonians constructed within chiral effective field theory provide an unprecedented oppor...
The quantum many-body bound-state problem in its computationally successful coupled cluster method (...
AbstractWe describe the essential spectrum and prove the Mourre estimate for quantum particle system...
Renormalization is a powerful concept in the many-body problem. Inspired by the highly successful de...
Non-unitary theories are commonly seen in the classical simulations of quantum systems. Among these ...
In the conventional Schr\"{o}dinger's formulation of quantum mechanics the unitary evolution of a st...
In quite a few recent quantum models one is allowed to make a given Hamiltonian H self-adjoint only ...
In non-relativistic quantum mechanics, stationary states of molecules and atoms are described by eig...
State-average calculations based on a mixture of states are increasingly being exploited across chem...
This paper presents a new self‐consistent dressing of a singles and doubles configuration interactio...
We develop ab-initio coupled-cluster theory to describe resonant and weakly bound states along the n...
Our overarching goal is the development of wavefunction-based quantum chemistry methods that give go...
We enhance the recently proposed Optimized-orbital Quasi-Variational Coupled Cluster Doubles (OQVCCD...
AbstractTo solve the relativistic bound-state problem one needs to systematically and simultaneously...
State-average calculations based on mixture of states are increasingly being exploited across chemis...
Nuclear Hamiltonians constructed within chiral effective field theory provide an unprecedented oppor...
The quantum many-body bound-state problem in its computationally successful coupled cluster method (...
AbstractWe describe the essential spectrum and prove the Mourre estimate for quantum particle system...
Renormalization is a powerful concept in the many-body problem. Inspired by the highly successful de...
Non-unitary theories are commonly seen in the classical simulations of quantum systems. Among these ...
In the conventional Schr\"{o}dinger's formulation of quantum mechanics the unitary evolution of a st...
In quite a few recent quantum models one is allowed to make a given Hamiltonian H self-adjoint only ...
In non-relativistic quantum mechanics, stationary states of molecules and atoms are described by eig...
State-average calculations based on a mixture of states are increasingly being exploited across chem...
This paper presents a new self‐consistent dressing of a singles and doubles configuration interactio...
We develop ab-initio coupled-cluster theory to describe resonant and weakly bound states along the n...
Our overarching goal is the development of wavefunction-based quantum chemistry methods that give go...
We enhance the recently proposed Optimized-orbital Quasi-Variational Coupled Cluster Doubles (OQVCCD...
AbstractTo solve the relativistic bound-state problem one needs to systematically and simultaneously...
State-average calculations based on mixture of states are increasingly being exploited across chemis...
Nuclear Hamiltonians constructed within chiral effective field theory provide an unprecedented oppor...