The main objects of study in this thesis are matroids. In particular we are interested in three particular classes matroids: regular matroids, arithmetic matroids, and internally perfect matroids. Of these families, regular matroids are the oldest and most well-known. In contrast, arithmetic matroids are relatively new structures that simultaneously capture combinatorial and geometric invariants of rational vector configurations. We introduce the class of internally perfect matroids in order to use the structure of the internal order of such a matroid to prove Stanley's conjecture that (under a certain assumption) any h-vector of a matroid is a pure O-sequence in this case. The thesis is structured as follows. We give all relevant backgrou...