This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models first to the generalized linear model framework. Then, a nonparametric version of these models is proposed by means of local fitting. Distances between individuals are the only predictor information needed to fit these models. Therefore, they are applicable, among others, to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. An implementation is provided by the R package dbstats, which also implements other distance-based prediction methods. Supplementary material for this article is available online, which reproduces all the results of this article.Peer Review...
Este trabajo aborda el problema de comparar modelos lineales normales desde una perspectiva geométri...
El concepte de distància s'ha utilizat en diferents camps i és bàsic en alguns mètodes estadístics r...
AbstractA distance for mixed nominal, ordinal and continuous data is developed by applying the Kullb...
This paper introduces local distance-based generalized linear models. These models extend (weighted)...
This paper introduces local distance-based generalized linear models. These models extend (weighted)...
Geographically weighted regression (GWR) is an important local technique for exploring spatial hete...
Geographically weighted regression (GWR) is an important local technique to model spatially varying ...
Geographically Weighted Regression (GWR) is a local technique that models spatially varying relation...
In standard geographically weighted regression (GWR), the spatially-varying relationships between th...
Geographically Weighted Regression (GWR) is a local modelling technique to estimate regression model...
In this study, the geographically weighted regression (GWR) model is adapted to benefit from a broa...
Distance-based regression allows for a neat implementation of the Partial Least Squares recurrence. ...
This paper establishes a general framework for metric scaling of any distance measure between indivi...
In this study, the geographically weighted regression (GWR) model is adapted to benefit from a broad...
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir d...
Este trabajo aborda el problema de comparar modelos lineales normales desde una perspectiva geométri...
El concepte de distància s'ha utilizat en diferents camps i és bàsic en alguns mètodes estadístics r...
AbstractA distance for mixed nominal, ordinal and continuous data is developed by applying the Kullb...
This paper introduces local distance-based generalized linear models. These models extend (weighted)...
This paper introduces local distance-based generalized linear models. These models extend (weighted)...
Geographically weighted regression (GWR) is an important local technique for exploring spatial hete...
Geographically weighted regression (GWR) is an important local technique to model spatially varying ...
Geographically Weighted Regression (GWR) is a local technique that models spatially varying relation...
In standard geographically weighted regression (GWR), the spatially-varying relationships between th...
Geographically Weighted Regression (GWR) is a local modelling technique to estimate regression model...
In this study, the geographically weighted regression (GWR) model is adapted to benefit from a broa...
Distance-based regression allows for a neat implementation of the Partial Least Squares recurrence. ...
This paper establishes a general framework for metric scaling of any distance measure between indivi...
In this study, the geographically weighted regression (GWR) model is adapted to benefit from a broad...
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir d...
Este trabajo aborda el problema de comparar modelos lineales normales desde una perspectiva geométri...
El concepte de distància s'ha utilizat en diferents camps i és bàsic en alguns mètodes estadístics r...
AbstractA distance for mixed nominal, ordinal and continuous data is developed by applying the Kullb...