Automatic speech recognition has become a standard feature on many consumer electronics and automotive products, and the accuracy of the decoded speech has improved dramatically over time. Often, designers of these products achieve accuracy by employing microphone arrays and beamforming algorithms to reduce interference. However, beamforming microphone arrays are too large for small form factor products such as smart watches. Yet these small form factor products, which have precious little space for tactile user input (i.e. knobs, buttons and touch screens), would benefit immensely from a user interface based on reliably accurate automatic speech recognition. This thesis proposes a solution for interference mitigation that employs blind sou...