AbstractFor a closed, pointed n-dimensional convex cone K in Rn, let π(K) denote the set of all n × n real matrices A which as linear operators map K into itself. Let ∑(K) denote the set of all n × n matrices that are cross-positive on K, and L(K) = ∑(K) ∩ [− ∑(K)], the lineality space of ∑(K). Let Λ = RI, the set of all real multiples of the n × n identity matrix I. Thenπ(K)+Δ⊆π(K)+L(K)⊆cl[π(K)+Δ]=Σ(K).The final equality was proved in 1970 by Schneider and Vidyasagar, who showed also that π(K) + Λ = ∑(K) when K is polyhedral but not when K is a three-dimensional circular cone. They asked for a general characterization of those K for which the equality holds. It is shown here that if n ⩾ 3 and the cone K is strictly convex or smooth, then π...