AbstractThis paper concerns the large time behavior of strong and classical solutions to the two-dimensional Stokes approximation equations for the compressible flows. We consider the unique global strong solution or classical solution to the two-dimensional Stokes approximation equations for the compressible flows with large external potential force, together with a Navier-slip boundary condition, for arbitrarily large initial data. Under the conditions that the corresponding steady state exists uniquely with the steady state density away from vacuum, we prove that the density is bounded from above independently of time, consequently, it converges to the steady state density in Lp and the velocity u converges to the steady state velocity i...