AbstractConstabelian codes can be viewed as ideals in twisted group algebras over finite fields. In this paper we study decomposition of semisimple twisted group algebras of finite abelian groups and prove results regarding complete determination of a full set of primitive orthogonal idempotents in such algebras. We also explicitly determine complete sets of primitive orthogonal idempotents of twisted group algebras of finite cyclic and abelian p-groups. We also describe methods of determining complete set of primitive idempotents of abelian groups whose orders are divisible by more than one prime and give concrete (numerical) examples of minimal constabelian codes, illustrating the above mentioned results