AbstractIt is well known that the solutions of functional differential equations have jump-discontinuities in their derivatives, unless some rather restrictive compatibility conditions are imposed upon the initial function. In this paper a method for the calculation of the position and the value of these jumps is presented, and conditions that are sufficient for the solution to be smooth between the jump-discontinuities are given
Proceedings, pp. 228—252 Iterative functional differential equations are equations involving deriva-...
The classes of solutions in [0, oo) of the general functional-differential equation (1) are studied...
AbstractA “fundamental theory” is presented for the equation x(t) = ∫0t q(x(s), s) ds where the inte...
AbstractIt is well known that the solutions of functional differential equations have jump-discontin...
AbstractThe midpoint difference method applied to boundary value problems for functional differentia...
In this paper we analyze how to compute discontinuous solutions for functional-differential equation...
summary:Our aim in this paper is to obtain sufficient conditions under which for every $\xi \in R^n$...
AbstractA sufficient condition is given for the solutions of a functionally perturbed linear system ...
summary:Algorithms for finding an approximate solution of boundary value problems for systems of fun...
AbstractA classification of the solutions of the functional differential equation x′(t) = x(x(t)) is...
AbstractWe study the well-posedness of initial value problems for nonlinear functional differential–...
URL des Documents de travail : http://centredeconomiesorbonne.univ-paris1.fr/bandeau-haut/documents-...
summary:The author defines the numerical solution of a first order ordinary differential equation on...
We consider second-order differential-difference equations in bounded domains in the case where seve...
This paper deals with the first boundary value problem (BVP) for equations which are a differential ...
Proceedings, pp. 228—252 Iterative functional differential equations are equations involving deriva-...
The classes of solutions in [0, oo) of the general functional-differential equation (1) are studied...
AbstractA “fundamental theory” is presented for the equation x(t) = ∫0t q(x(s), s) ds where the inte...
AbstractIt is well known that the solutions of functional differential equations have jump-discontin...
AbstractThe midpoint difference method applied to boundary value problems for functional differentia...
In this paper we analyze how to compute discontinuous solutions for functional-differential equation...
summary:Our aim in this paper is to obtain sufficient conditions under which for every $\xi \in R^n$...
AbstractA sufficient condition is given for the solutions of a functionally perturbed linear system ...
summary:Algorithms for finding an approximate solution of boundary value problems for systems of fun...
AbstractA classification of the solutions of the functional differential equation x′(t) = x(x(t)) is...
AbstractWe study the well-posedness of initial value problems for nonlinear functional differential–...
URL des Documents de travail : http://centredeconomiesorbonne.univ-paris1.fr/bandeau-haut/documents-...
summary:The author defines the numerical solution of a first order ordinary differential equation on...
We consider second-order differential-difference equations in bounded domains in the case where seve...
This paper deals with the first boundary value problem (BVP) for equations which are a differential ...
Proceedings, pp. 228—252 Iterative functional differential equations are equations involving deriva-...
The classes of solutions in [0, oo) of the general functional-differential equation (1) are studied...
AbstractA “fundamental theory” is presented for the equation x(t) = ∫0t q(x(s), s) ds where the inte...