AbstractAccurate estimation of yield gaps is only possible for locations where high quality local data are available, which are, however, lacking in many regions of the world. The challenge is how yield gap estimates based on location-specific input data can be used to obtain yield gap estimates for larger spatial areas. Hence, insight about the minimum number of locations required to achieve robust estimates of yield gaps at larger spatial scales is essential because data collection at a large number of locations is expensive and time consuming. In this paper we describe an approach that consists of a climate zonation scheme supplemented by agronomical and locally relevant weather, soil and cropping system data. Two elements of this method...