AbstractEntropy on nonautonomous maps {fi}ı=0∞ of the interval is defined 2 ways. Under one definition, called forward entropy, it is shown that positive entropy implies that the inverse limit space of ({fi}ı=0∞,I) contains an indecomposable subcontinuum. Under the second definition, called backwards entropy, it is shown that the inverse limit space of ({fi}ı=0∞,I) is not locally connected
AbstractA proof of a localized version of the proven entropy conjecture for C∞ smooth maps is given....
In the previous paper Adv. Math. 304 (2017), pp. 793-808, we proved that if for any graph $ G$, a ho...
AbstractInverse limit spaces of one-dimensional continua frequently appear as attractors in dissipat...
AbstractEntropy on nonautonomous maps {fi}ı=0∞ of the interval is defined 2 ways. Under one definiti...
AbstractIn this paper we show that if f:I→I is a map such that the inverse limit space, P=lim←{I,f}i...
AbstractLet I be a closed interval and f : I → I be continuous. We investigate the structure of the ...
AbstractLet I be a closed interval and f : I → I be continuous. We investigate the structure of the ...
AbstractWe generalize a result of Bowen by showing that the topological entropy of the induced map o...
The aim of this paper is to prove the following results: a continuous map f : [0; 1] ! [0; 1] is ch...
AbstractThe aim of this paper is to introduce a definition of topological entropy for continuous map...
Let $f_{0,\infty}=\{f_n\}_{n=0}^{\infty}$ be a sequence of continuous self-maps on a compact metric ...
AbstractLet X be a compact metric space and f:X→X be continuous. Let h⁎(f) be the supremum of sequen...
AbstractLet f : I → I be a continuous function where I is the unit interval. Let (I, f) be the inver...
summary:A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonne...
summary:A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonne...
AbstractA proof of a localized version of the proven entropy conjecture for C∞ smooth maps is given....
In the previous paper Adv. Math. 304 (2017), pp. 793-808, we proved that if for any graph $ G$, a ho...
AbstractInverse limit spaces of one-dimensional continua frequently appear as attractors in dissipat...
AbstractEntropy on nonautonomous maps {fi}ı=0∞ of the interval is defined 2 ways. Under one definiti...
AbstractIn this paper we show that if f:I→I is a map such that the inverse limit space, P=lim←{I,f}i...
AbstractLet I be a closed interval and f : I → I be continuous. We investigate the structure of the ...
AbstractLet I be a closed interval and f : I → I be continuous. We investigate the structure of the ...
AbstractWe generalize a result of Bowen by showing that the topological entropy of the induced map o...
The aim of this paper is to prove the following results: a continuous map f : [0; 1] ! [0; 1] is ch...
AbstractThe aim of this paper is to introduce a definition of topological entropy for continuous map...
Let $f_{0,\infty}=\{f_n\}_{n=0}^{\infty}$ be a sequence of continuous self-maps on a compact metric ...
AbstractLet X be a compact metric space and f:X→X be continuous. Let h⁎(f) be the supremum of sequen...
AbstractLet f : I → I be a continuous function where I is the unit interval. Let (I, f) be the inver...
summary:A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonne...
summary:A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonne...
AbstractA proof of a localized version of the proven entropy conjecture for C∞ smooth maps is given....
In the previous paper Adv. Math. 304 (2017), pp. 793-808, we proved that if for any graph $ G$, a ho...
AbstractInverse limit spaces of one-dimensional continua frequently appear as attractors in dissipat...