AbstractWe introduce quantified interpreted systems, a semantics to reason about knowledge in multi-agent systems in a first-order setting. Quantified interpreted systems may be used to interpret a variety of first-order modal epistemic languages with global and local terms, quantifiers, and individual and distributed knowledge operators for the agents in the system. We define first-order modal axiomatisations for different settings, and show that they are sound and complete with respect to the corresponding semantical classes.The expressibility potential of the formalism is explored by analysing two MAS scenarios: an infinite version of the muddy children problem, a typical epistemic puzzle, and a version of the battlefield game. Furthermo...