We explore an algebraic language for networks consisting of a fixed number of reactive units, communicating synchronously over a fixed linking structure. The language has only two operators: disjoint parallelism, where two networks are composed in parallel without any interconnection, and linking, where an interconnection is formed between two ports. The intention is that these operators corresponds to the primitive steps when constructing networks, and that they therefore are conceptually simpler than the operators in existing process algebras. We investigate the expressive power of our language. The results are: (1) Definability of behaviours: with only three simple processing units, every finite-state behaviour can be constructed. (2) De...
The problem of designing a component that combined with a known part of a system, conforms to a give...
. We will study systems for which a maximal number of concurrently executing (time consuming) action...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...
We explore an algebraic language for networks consisting of a fixed number of reactive units, commun...
We define an algebraic language for networks of synchronously communicating processes. A node in th...
We define an algebraic language for networks of synchronously communicating processes. A node in the...
We define an algebraic language for networks of synchronously communicating processes. A node in the...
AbstractWe define an algebraic language for networks of synchronously communicating asynchronous pro...
AbstractWe define an algebraic language for networks of synchronously communicating asynchronous pro...
AbstractPetri nets are widely used to model concurrent systems. However, their composition and abstr...
Inspired by the pioneering work of Petri and the rise of diagrammatic formalisms to reason about net...
We introduce a process algebra containing the coordination primitives of Linda (asynchronous communi...
Three issues concerning parallelism in a concurrent system are considered: description of system str...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...
The problem of designing a component that combined with a known part of a system, conforms to a give...
. We will study systems for which a maximal number of concurrently executing (time consuming) action...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...
We explore an algebraic language for networks consisting of a fixed number of reactive units, commun...
We define an algebraic language for networks of synchronously communicating processes. A node in th...
We define an algebraic language for networks of synchronously communicating processes. A node in the...
We define an algebraic language for networks of synchronously communicating processes. A node in the...
AbstractWe define an algebraic language for networks of synchronously communicating asynchronous pro...
AbstractWe define an algebraic language for networks of synchronously communicating asynchronous pro...
AbstractPetri nets are widely used to model concurrent systems. However, their composition and abstr...
Inspired by the pioneering work of Petri and the rise of diagrammatic formalisms to reason about net...
We introduce a process algebra containing the coordination primitives of Linda (asynchronous communi...
Three issues concerning parallelism in a concurrent system are considered: description of system str...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...
The problem of designing a component that combined with a known part of a system, conforms to a give...
. We will study systems for which a maximal number of concurrently executing (time consuming) action...
AbstractWe introduce a process algebra containing the coordination primitives of Linda (asynchronous...