Increase in data quantities and number of pervasive systems has resulted in many decision-making systems. Most of these systems employ Machine Learning (ML) in various practical scenarios and applications. Enormous amount of data generated by sensors can be useful in decision-making systems. The rising number of sensor driven pervasive systems presents interesting research areas on how to adapt and apply existing ML techniques effectively to the domain of pervasive computing. In the face of data deluge, ML has proved viable in many application areas such as data mining and self-customizing programs and could bring about great impact in the field of pervasive computing.The objective of this study is to give the underlying concepts of ML tech...