Anyons exist as pointlike particles in two dimensions and carry braid statistics, which enable interactions that are independent of the distance between the particles. Except for a relatively few number of models, which are analytically tractable, much of the physics of anyons remains still unexplored. In this paper, we show how U(1) symmetry can be combined with the previously proposed anyonic matrix product states to simulate ground states and dynamics of anyonic systems on a lattice at any rational particle number density. We provide proof of principle by studying itinerant anyons on a one-dimensional chain where no natural notion of braiding arises and also on a two-leg ladder where the anyons hop between sites and possibly braid. We co...