In this dissertation Gaussian processes are used to define prior distributions over latent functions in hierarchical Bayesian models. Gaussian process is a non-parametric model with which one does not need to fix the functional form of the latent function, but its properties can be defined implicitly. These implicit statements are encoded in the mean and covariance function, which determine, for example, the smoothness and variability of the function. This non-parametric nature of the Gaussian process gives rise to a flexible and diverse class of probabilistic models. There are two main challenges with using Gaussian processes. Their main complication is the computational time which increases rapidly as a function of a number of data poi...