Presentamos algoritmos para el cálculo de la descomposición equidimensional de una variedad algebraica afín a partir (le un conjunto finito de polinomios que la define: En primer lugar, se prueba la existencia de un algoritmo dcterminístico no uniforme que calcula en tiempo polinomial una descripción de la componente equidimensional de dimensión máxima de una variedad algebraica. Aplicando este algoritmo se obtiene un procedimiento para decidir si una variedad es equidimensional o no. A continuación, se construye un algoritmo probabilistico que (la en tiempo polinomial, para cada componente equidimensional de una variedad dada, un conjunto Íinito de polinomios que la define. Para terminar, se desarrolla otro algoritmo probabilístico, que ca...
Given a system of polynomial equations and inequations with coe- cients in the eld of rational numb...
International audienceWe present a probabilistic Las Vegas algorithm for solving sufficiently generi...
This PhD thesis deals with some particular aspects of the algebraic systems resolution. Firstly, we ...
AbstractIn this paper we present a probabilistic algorithm which computes, from a finite set of poly...
We present a bounded probability algorithm for the computation of the Chowforms of the equidimension...
Let (Formula presented.) be a smooth, equidimensional, quasi-affine variety of dimension (Formula pr...
Esta tesis se centra en la resolución efectiva de sistemas de ecuaciones polinomiales reales (es dec...
AbstractWe present a new probabilistic method for solving systems of polynomial equations and inequa...
Esta tesis se centra en la resolución efectiva de sistemas de ecuaciones polinomiales reales (es dec...
This paper focuses on the equidimensional decomposition of affine varieties defined by sparse polyno...
International audienceLet f ∈ Q[X1,. .. , Xn] be a polynomial of degree D. We consider the problem o...
Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretament...
AbstractLet K be an algebraically closed field, V⊂Kn be a smooth equidimensional algebraic variety a...
Esta tesis está dedicada a ciertas tareas computacionales de geometría algebraica en característica ...
AbstractWe give a uniform method for the two problems of counting the connected and irreducible comp...
Given a system of polynomial equations and inequations with coe- cients in the eld of rational numb...
International audienceWe present a probabilistic Las Vegas algorithm for solving sufficiently generi...
This PhD thesis deals with some particular aspects of the algebraic systems resolution. Firstly, we ...
AbstractIn this paper we present a probabilistic algorithm which computes, from a finite set of poly...
We present a bounded probability algorithm for the computation of the Chowforms of the equidimension...
Let (Formula presented.) be a smooth, equidimensional, quasi-affine variety of dimension (Formula pr...
Esta tesis se centra en la resolución efectiva de sistemas de ecuaciones polinomiales reales (es dec...
AbstractWe present a new probabilistic method for solving systems of polynomial equations and inequa...
Esta tesis se centra en la resolución efectiva de sistemas de ecuaciones polinomiales reales (es dec...
This paper focuses on the equidimensional decomposition of affine varieties defined by sparse polyno...
International audienceLet f ∈ Q[X1,. .. , Xn] be a polynomial of degree D. We consider the problem o...
Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretament...
AbstractLet K be an algebraically closed field, V⊂Kn be a smooth equidimensional algebraic variety a...
Esta tesis está dedicada a ciertas tareas computacionales de geometría algebraica en característica ...
AbstractWe give a uniform method for the two problems of counting the connected and irreducible comp...
Given a system of polynomial equations and inequations with coe- cients in the eld of rational numb...
International audienceWe present a probabilistic Las Vegas algorithm for solving sufficiently generi...
This PhD thesis deals with some particular aspects of the algebraic systems resolution. Firstly, we ...