Large, multi-terabyte main memories per processor socket are instrumental to address the continuously growing performance demands of domains like high-performance computing, databases, and big data. It is an important objective to design large-capacity main memories in a way that maximizes their cost-effectiveness and at the same time minimizes performance losses caused by cost-effective tradeoffs. This thesis addresses a number of issues towards this objective.<br />First, parallel memory protocols, that are key to large main memories, have a limited number of pins. This implies that to address future capacities, the protocols would have to multiplex the pins to transfer wider addresses in a greater number of cycles, hurting performance. T...