We study approximation of Boolean functions by low-degree polynomials over the ring Z/2^kZ. More precisely, given a Boolean function F:{0,1}^n -> {0,1}, define its k-lift to be F_k:{0,1}^n -> {0,2^(k-1)} by F_k(x) = 2^(k-F(x)) (mod 2^k). We consider the fractional agreement (which we refer to as gamma_{d,k}(F)) of F_k with degree d polynomials from Z/2^kZ[x_1,..,x_n]. Our results are the following: * Increasing k can help: We observe that as k increases, gamma_{d,k}(F) cannot decrease. We give two kinds of examples where gamma_{d,k}(F) actually increases. The first is an infinite family of functions F such that gamma_{2d,2}(F) - gamma_{3d-1,1}(F) >= Omega(1). The second is an infinite family of functions F such that gamma_{d,1}(F) = 1/2 +...