The Foundational Proof Certificate (FPC) approach to proof evidence offers a flexible framework for the formal definition of proof semantics, described through its relationship to focused proof systems. The certificates thus produced by tools are executable when interpreted on top of a suitable logic engine, and can therefore be independently verified by trusted proof checkers. The fundamental obstacle encountered here lies in translating the proof evidence produced by a tool in the terms of a formal definition in the system. These formal definitions are akin to domain-specific languages (in which proofs can be written) programmed in the assembly language of the underlying proof systems: a delicate task for which both expert knowledge and g...