In the context of Dynamic Factor Models (DFM), we compare point and interval estimates of the underlying unobserved factors extracted using small and big-data procedures. Our paper differs from previous works in the related literature in several ways. First, we focus on factor extraction rather than on prediction of a given variable in the system. Second, the comparisons are carried out by implementing the procedures considered to the same data. Third, we are interested not only on point estimates but also on confidence intervals for the factors. Based on a simulated system and the macroeconomic data set popularized by Stock and Watson (2012), we show that, for a given procedure, factor estimates based on different cross-sectional d...