Parallelizing (compute-intensive) discrete event simulation (DES) applications is a classical approach for speeding up their execution and for making very large/complex simulation models tractable. This has been historically achieved via parallel DES (PDES) techniques, which are based on partitioning the simulation model into distinct simulation objects (somehow resembling objects in classical object-oriented programming), whose states are disjoint, which are executed concurrently and rely on explicit event-exchange (or event-scheduling) primitives as the means to support mutual dependencies and notification of their state updates. With this approach, the application developer is necessarily forced to reason about state separation across th...