Motion estimation has been studied extensively in neuroscience in the last two decades. Even though there has been some early interaction between the biological and computer vision communities at a modelling level, comparatively little work has been done on the examination or extension of the biological models in terms of their engineering efficacy on modern optical flow estimation datasets. An essential contribution of this paper is to show how a neural model can be enriched to deal with real sequences. We start from a classical V1-MT feedforward architecture. We model V1 cells by motion energy (based on spatio-temporal filtering), and MT pattern cells (by pooling V1 cell responses). The efficacy of this architecture and its inherent limit...