In modern large-scale supercomputing applications, Algebraic Multigrid (AMG) is a leading choice for solving linear systems. However, on the newest architectures, the relatively high cost of communication versus computation is a concern for the scalability of traditional implementations. Introduced here are Algebraic Multigrid Domain Decomposition (AMG-DD) and Algebraic Multigrid Range Decomposition (AMG-RD) which trade communication for computation by forming composite levels that replace many stages of multilevel communication with local computation using redundant information. Another open topic in the application of AMG is in the context of solving systems of partial differential equations. Adaptive Smoothed Aggregation was developed as...
With the ubiquity of large-scale computing resources has come significant attention to practical det...
Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many compu...
Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many compu...
Since the early nineties, there has been a strongly increasing demand for more efficient methods to ...
In the last two decades, substantial effort has been devoted to solve large systems of linear equati...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Abstract. Substantial e®ort has been focused over the last two decades on developing multi-level ite...
Algebraic multigrid (AMG) is a class of high-performance linear solvers based on multigrid principle...
Algebraic Multiscale (AMS) is a recent development for the construction of efficient linear solvers ...
Since the early nineties, there has been a strongly increasing demand for more efficient methods to ...
With the ubiquity of large-scale computing resources has come significant attention to practical det...
Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many compu...
Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many compu...
Since the early nineties, there has been a strongly increasing demand for more efficient methods to ...
In the last two decades, substantial effort has been devoted to solve large systems of linear equati...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Linear solvers for large and sparse systems are a key element of scientific applications, and their ...
Abstract. Substantial e®ort has been focused over the last two decades on developing multi-level ite...
Algebraic multigrid (AMG) is a class of high-performance linear solvers based on multigrid principle...
Algebraic Multiscale (AMS) is a recent development for the construction of efficient linear solvers ...
Since the early nineties, there has been a strongly increasing demand for more efficient methods to ...
With the ubiquity of large-scale computing resources has come significant attention to practical det...
Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many compu...
Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many compu...