Scientific applications are usually described as directed acyclic graphs, where nodes represent tasks and edges represent dependencies between tasks. For some applications, such as the multifrontal method of sparse matrix factorization, this graph is a tree: each task produces a single output data, used by a single task (its parent in the tree). We focus on the case when the data manipulated by tasks have a large size, which is especially the case in the multifrontal method. To process a task, both its inputs and its output must fit in the main memory. Moreover, output results of tasks have to be stored between their production and their use by the parent task. It may therefore happen, during an execution, that not all data fit ...