We study the emergent dynamics for the hydrodynamic Cucker--Smale system arising in the modeling of flocking dynamics in interacting many-body systems. Specifically, the initial value problem with a moving domain is considered to investigate the global existence and time-asymptotic behavior of classical solutions, provided that the initial mass density has bounded support and the initial data are in an appropriate Sobolev space. In order to show the emergent behavior of flocking, we make use of an appropriate Lyapunov functional that measures the total fluctuation in the velocity relative to the mean velocity. In our analysis, we present the local well-posedness of the smooth solutions via Lagrangian coordinates, and we extend to the global...