Process-aware information systems typically log events (e.g., in transaction logs or audit trails) related to the actual execution of business processes. Analysis of these execution logs may reveal important knowledge that can help organizations to improve the quality of their services. Starting from a process model, which can be discovered by conventional process mining algorithms, we analyze how data attributes influence the choices made in the process based on past process executions using decision mining, also referred to as decision point analysis. In this paper we describe how the resulting model (including the discovered data dependencies) can be represented as a Colored Petri Net (CPN), and how further perspectives, such as the perf...