Cílem této dizertační prace je vylepšit existující detektory objektů pomocí sdílení informace a výpočtů mezi blízkými pozicemi v obraze. Navrhuje dvě metody, které jsou založené na Waldově sekvenčním testu poměrem pravděpodobností a algoritmu WaldBoost. První z nich, Early non-Maxima Suppression , přesunuje rozhodování o potlačení nemaximálních pozic ze závěrečné fáze do fáze vyhodnocování detektoru, čímž zamezuje zbytečným výpočtům detektoru v nemaximálních pozicích. Metoda neighborhood suppression doplňuje existující detektory o schopnost zavrhnout okolní pozice v obraze. Navržené metody je možné aplikovat na širokou škálu detektorů. Vyhodnocení obou metod dokazují jejich výrazně vyšší efektivitu v porovnání s detektory, které vyhodnocují...