Kvalitní a efektivní zpracování rostoucího množství multimediálních dat začíná být v dnešní době stále více potřebné pro získání určité znalosti z těchto dat. Práce se zabývá výzkumem, implementací, optimalizací a experimentálním ověřením automatických metod strojového učení pro získávání znalostí z multimediálních dat, kde bylo v řadě příkladů dosaženo vyšší přesnosti ve srovnání s konvenčními metodami a vybrané výsledky byly publikovány v časopisech s impaktním faktorem [1, 2]. K tomu byly v práci speciálně vytvořeny výpočetní metody, které využívají masivně paralelní hardware, díky kterému je dosaženo úspory elektrické energie a výpočetního času při dosažení lepší přesnosti řešených problémů. Výpočty trvající běžně v řádech dní bylo možn...