Let G be a reductive complex Lie group acting holomorphically on normal Stein spaces X and Y, which are locally G-biholomorphic over a common categorical quotient Q. When is there a global G-biholomorphism X → Y? If the actions of G on X and Y are what we, with justification, call generic, we prove that the obstruction to solving this local-to-global problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch. We prove that X and Y are G-biholomorphic if X is K-contractible, where K is a maximal compact subgroup of G, or if X and Y are smooth and there is a G-diffeomorphism Ψ : X → Y over Q, which is holomorphic when restrict...