Let M = ℝsn/Γ be a complete flat pseudo-Riemannian homogeneous manifold, Γ ⊂ Iso(ℝsn) its fundamental group and G the Zariski closure of Γ in Iso(ℝsn). We show that the G-orbits in ℝsn are affine subspaces and affinely diffeomorphic to G endowed with the (0)-connection. If the restriction of the pseudo-scalar product on ℝsn to the G-orbits is nondegenerate, then M has abelian linear holonomy. If additionally G is not abelian, then G contains a certain subgroup of dimension 6. In particular, for non-abelian G, orbits with non-degenerate metric can appear only if dim G ≥ 6. Moreover, we show that ℝsn is a trivial algebraic principal bundle G → M → ℝn−k. As a consquence, M is a trivial smooth bundle G/Γ → M → ℝn−k with compact fiber G/Γ.Wolfga...
summary:Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge...
Let $M$ be a homogeneous pseudo-Riemannian manifold, affine manifold, or Finsler space. A homogeneou...
The aim of this paper is to describe all invariant affine connections on pseudo-Riemannian homogeneo...
We construct homogeneous flat pseudo-Riemannian manifolds with non-abelian fundamental group. In the...
We show that a complete flat pseudo-Riemannian homogeneous manifold with non-abelian linear holonomy...
Let $M$ be a homogeneous pseudo-Riemannian manifold, affine manifold, or Finsler space. A homogeneou...
summary:We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki met...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
Let M be an analytic complete finite volume pseudo-Riemannian manifold. We characterize the structur...
Given a homogeneous pseudo-Riemannian space (G/H,⟨,⟩), a geodesic γ: I→ G/ H is said to be two-step ...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
Consider the space M = O(p, q)/O(p) × O(q) of positive p-dimensional subspaces in a pseudo-Euclidean...
The aim of this paper is to describe all invariant affine connections on pseudo-Riemannian homogeneo...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
summary:Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge...
Let $M$ be a homogeneous pseudo-Riemannian manifold, affine manifold, or Finsler space. A homogeneou...
The aim of this paper is to describe all invariant affine connections on pseudo-Riemannian homogeneo...
We construct homogeneous flat pseudo-Riemannian manifolds with non-abelian fundamental group. In the...
We show that a complete flat pseudo-Riemannian homogeneous manifold with non-abelian linear holonomy...
Let $M$ be a homogeneous pseudo-Riemannian manifold, affine manifold, or Finsler space. A homogeneou...
summary:We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki met...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
Let M be an analytic complete finite volume pseudo-Riemannian manifold. We characterize the structur...
Given a homogeneous pseudo-Riemannian space (G/H,⟨,⟩), a geodesic γ: I→ G/ H is said to be two-step ...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
Consider the space M = O(p, q)/O(p) × O(q) of positive p-dimensional subspaces in a pseudo-Euclidean...
The aim of this paper is to describe all invariant affine connections on pseudo-Riemannian homogeneo...
We describe all invariant affine connections on three-dimensional pseudo-Riemannian homogeneous spac...
summary:Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge...
Let $M$ be a homogeneous pseudo-Riemannian manifold, affine manifold, or Finsler space. A homogeneou...
The aim of this paper is to describe all invariant affine connections on pseudo-Riemannian homogeneo...