We consider smooth, infinitely divisible random fields with regularly varying Levy measure, and are interested in the geometric characteristics of the excursion sets over high levels u. For a large class of such random fields we compute the asymptotic joint distribution of the numbers of critical points, of various types, of the random field in the excursion set, conditional on the latter being non-empty. This allows us, for example, to obtain the asymptotic conditional distribution of the Euler characteristic of the excursion set. In a significant departure from the Gaussian situation, the high level excursion sets for these random fields can have quite a complicated geometry. Whereas in the Gaussian case non-empty ...
International audienceThe study of the geometry of excursion sets of 2D random fields is a question ...
By "thresholding" a random field, excursion set models for binary images can be obtained. For random...
When a random field (Xt; t 2 R2) is thresholded on a given level u, the excursion set is given by it...
Abstract: Studying the geometry generated by Gaussian and Gaussian-related random fields via their e...
Gaussian fields are widely used for modelling spatial phenomena in disciplines such as cosmology, me...
Studying the geometry generated by Gaussian and Gaussian-related random fields via their excursion s...
A monograph that is devoted to a fresh approach to geometric problems arising in the study of random...
Let M be a compact smooth manifold of dimension n with or without boundary, and f : M → R be a smoot...
International audienceIn the present paper, we deal with a stationary isotropic random field X : R d...
For a smooth, stationary, planar Gaussian field, we consider the number of connected components of i...
For a smooth, stationary, planar Gaussian field, we consider the number of connected components of i...
Nazarov and Sodin have shown that the number of connected components of the nodal set of a planar Ga...
Our interest in this paper is to explore limit theorems for various geometric function-als of excurs...
Forthcoming (2017) in Journal of Theoretical ProbabilityOur interest in this paper is to explore lim...
Asymptotic approximations of threshold exceedance probabilities for random fields have been establis...
International audienceThe study of the geometry of excursion sets of 2D random fields is a question ...
By "thresholding" a random field, excursion set models for binary images can be obtained. For random...
When a random field (Xt; t 2 R2) is thresholded on a given level u, the excursion set is given by it...
Abstract: Studying the geometry generated by Gaussian and Gaussian-related random fields via their e...
Gaussian fields are widely used for modelling spatial phenomena in disciplines such as cosmology, me...
Studying the geometry generated by Gaussian and Gaussian-related random fields via their excursion s...
A monograph that is devoted to a fresh approach to geometric problems arising in the study of random...
Let M be a compact smooth manifold of dimension n with or without boundary, and f : M → R be a smoot...
International audienceIn the present paper, we deal with a stationary isotropic random field X : R d...
For a smooth, stationary, planar Gaussian field, we consider the number of connected components of i...
For a smooth, stationary, planar Gaussian field, we consider the number of connected components of i...
Nazarov and Sodin have shown that the number of connected components of the nodal set of a planar Ga...
Our interest in this paper is to explore limit theorems for various geometric function-als of excurs...
Forthcoming (2017) in Journal of Theoretical ProbabilityOur interest in this paper is to explore lim...
Asymptotic approximations of threshold exceedance probabilities for random fields have been establis...
International audienceThe study of the geometry of excursion sets of 2D random fields is a question ...
By "thresholding" a random field, excursion set models for binary images can be obtained. For random...
When a random field (Xt; t 2 R2) is thresholded on a given level u, the excursion set is given by it...