We propose new classes of preconditioners for the linear systems arising from a boundary integral equation method. The problem under consideration is Laplace's equation in three dimensions. The system arising in this context is dense and unsymmetric. Our preconditioners, which are based on solving small linear systems at each node, reduce the number of iterations in some cases by a factor of 20. Two iterative methods are considered: conjugate gradient on the normal equations and GMREES of Saad and Shultz. For a simple model problem, we demonstrate the exact relationship between the preconditioners and the resulting condition number of the preconditioned system is decreased by a factor asymptotically greater than any constant
We present a preconditioning method for the linear systems arising from the boundary element discret...
We consider the solution of delay differential equations (DDEs) by using boundary value methods (BVM...
Abstract. Finite element discretizations of multiphysics problems frequently give rise to block-stru...
Abstract. A preconditioning algorithm is developed in this paper for the iterative solution of the l...
Abstract: In this paper, we survey some of the latest developments in using boundary value methods f...
The application of Boundary Value Methods to several classes of Differential Equations requires the...
In this paper two types of local sparse preconditioners are generalized to solve three-dimensional H...
The solution of ordinary and partial differential equations using implicit linear multistep formulas...
AbstractA preconditioner for the iterative solution of symmetric linear systems which arise in Galer...
AbstractWe consider the solution of differential equations with multidelays by using boundary value ...
The parallel version of precondition techniques is developed for matrices arising from the Galer...
AbstractA new class of preconditioners for the iterative solution of the linear systems arising from...
A new class of preconditioners for the iterative solution of the linear systems arising from interio...
We consider first-kind weakly singular and hypersingular boundary integral operators for the Laplaci...
The computational solution of problems can be restricted by the availability of solution methods for...
We present a preconditioning method for the linear systems arising from the boundary element discret...
We consider the solution of delay differential equations (DDEs) by using boundary value methods (BVM...
Abstract. Finite element discretizations of multiphysics problems frequently give rise to block-stru...
Abstract. A preconditioning algorithm is developed in this paper for the iterative solution of the l...
Abstract: In this paper, we survey some of the latest developments in using boundary value methods f...
The application of Boundary Value Methods to several classes of Differential Equations requires the...
In this paper two types of local sparse preconditioners are generalized to solve three-dimensional H...
The solution of ordinary and partial differential equations using implicit linear multistep formulas...
AbstractA preconditioner for the iterative solution of symmetric linear systems which arise in Galer...
AbstractWe consider the solution of differential equations with multidelays by using boundary value ...
The parallel version of precondition techniques is developed for matrices arising from the Galer...
AbstractA new class of preconditioners for the iterative solution of the linear systems arising from...
A new class of preconditioners for the iterative solution of the linear systems arising from interio...
We consider first-kind weakly singular and hypersingular boundary integral operators for the Laplaci...
The computational solution of problems can be restricted by the availability of solution methods for...
We present a preconditioning method for the linear systems arising from the boundary element discret...
We consider the solution of delay differential equations (DDEs) by using boundary value methods (BVM...
Abstract. Finite element discretizations of multiphysics problems frequently give rise to block-stru...