We consider the problem of sequential decision making under uncertainty in which the loss caused by a decision depends on the following binary observation. In competitive on-line learning, the goal is to design decision algorithms that are almost as good as the best decision rules in a wide benchmark class, without making any assumptions about the way the observations are generated. However, standard algorithms in this area can only deal with finite-dimensional (often countable) benchmark classes. In this paper we give similar results for decision rules ranging over an arbitrary reproducing kernel Hilbert space. For example, it is shown that for a wide class of loss functions (including the standard square, absolute, and log loss functions)...