International audienceIn this work, we characterize the solution of a system of elliptic integro-differential equations describing a phenotypically structured population subject to mutation, selection and migration between two habitats. Assuming that the effects of the mutations are small but nonzero, we show that the population's distribution has at most two peaks and we give explicit conditions under which the population will be monomorphic (unimodal distribution) or dimorphic (bimodal distribution). More importantly, we provide a general method to determine the dominant terms of the population's distribution in each case. Our work, which is based on Hamilton-Jacobi equations with constraint, goes further than previous works where such to...